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SYNODIC  PERIODS  AND  ORBITAL  ECCENTRICITY

By B. Cameron Reed

Department of Physics (Emeritus), Alma College, Michigan 

The effect of orbital eccentricity on the synodic period of a 
planet is examined at an undergraduate level. In the case of Mars, 
the effect is not dramatic but is certainly detectable in that the 
times between just a few successive oppositions can vary by values 
on the order of a month. This analysis could be appropriate as 
supplemental classroom material or as the source of a homework 
exercise.

 
A standard element of traditional astronomy education is to show how 

Copernicus and Kepler used measured synodic (s ) periods of planets to 
determine their sidereal (T ) periods, with the two being related by

 									       
		  (1)

where the upper (lower) sign holds for a superior (inferior) planet and all 
periods are measured in Earth years. Recall that the sidereal period is the 
physically important one, being the time required for a planet to orbit the Sun 
with respect to a distant star as seen by an observer outside the Solar System; 
this is the period that appears in Kepler’s Third Law. However, this cannot be 
observed directly by Earth-bound observers, as we also orbit the Sun. Rather, 
what we can measure is the synodic period, the time required for a planet to 
return to the same location in the sky relative to the Earth and Sun, typically 
a conjunction, opposition, or elongation. I will use the term ‘alignment’ in a 
generic sense to cover all these possibilities.

An informal survey of various lower-level undergraduate texts reveals that 
some derive Eq. (1) while others simply quote it or give only a qualitative 
description. Some apply the concept with a focus on lunar phases more so than 
planetary orbits, while in others the reverse is the case; my concern here is with 
planets. Whatever the level of treatment, however, the assumption is always that 
the orbits are circular, although some do remark that this is an approximation. 
An inquisitive student might then ask: “How would the eccentricity, even 
if modest, affect the synodic period? Also, since the speed of a planet in its 
orbit is always varying, would the time between successive alignments be truly 
periodic?”  

This paper describes an analysis of this situation and a program developed 
to run corresponding numerical calculations. For simplicity, I do assume that 
Earth’s orbit is circular, while that of the target planet has some eccentricity ε.

Fig. 1 illustrates an alignment between the Earth and a superior planet, whose 
major axis lies along the horizontal direction. At the moment of alignment, 
the apsidal angles φE of the Earth and φP of the planet are identical. Call this 
common angle φ0, and the time at which this occurs to be t0. The problem is 
to determine the angular position and time of the next alignment. Note that 
this does not require that the Earth and planet again align along the specific 
direction φ0, only that they align along the same value of φ. All angles are 
measured in radians. 

T =
s 

,(s + 1)

±
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For the Earth in its circular orbit with sidereal period TE (later to be set to  
1 year), the orbital angular speed is constant at 2π/TE. At some later time t, 
Earth will be at apsidal angle φE given by

				     					   
							       (2)

Now, it is shown below that for the planet with sidereal period TP , any later 
time t will correspond to apsidal position φP according as

							       (3)

where the function f(ε, φ) is determined in Eq. (8) below.
   
If Eq. (2) is solved for (t – t0) and the result substituted into Eq. (3), we have

					     (4)

Fig. 1

Scale drawing of Earth with a superior planet in opposition at common apsidal angle φE  = φP  = φ0. 
Scales are in AU, with the Sun at the origin. The planetary orbit has a  = 4 AU and ε = 0·5.

(φE – φ0) = ( 2π )(t – t0).TE

(t – t0) =
(1–ε2)3/2 TP [f(ε, φP ) – f(ε, φ0 )],2π

(φE – φ0) = (1–ε2)3/2 ( TP )[f(ε, φP) – f(ε, φ0)].TE

(φE – φ0) ++ 2π – (1–ε2)3/2 ( TP )[f(ε, φP ) – f(ε, φ0 )] = 0. TE

(t – t0) = (1–ε 2)3/2 T  ∫   0

dφ  .
2π (1–ε cos φ)2

f (φ, ε) =∫   dφ
=∫(1 + 2ε cos φ + 3ε 2 cos2 φ + ...)dφ. (1–ε cos φ)2

= φ(1 +   ε 2) + 2ε sin φ +    ε 2 sin (2φ) + ... . 
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The condition for the next alignment is that in the case of a superior (inferior) 
planet, the elapsed apsidal angle for the Earth has moved ahead (fallen behind) 
that of the planet by 2π radians:

									       
	 (5)

where the upper (lower) sign again applies for a superior (inferior) planet. Using 
this expression for φE  in Eq. (4) gives

				    (6)

This is an equation of constraint for the next alignment at apsidal angle 
φP. Once this position has been determined, the corresponding time can be 
determined from Eq. (2) or (3), and the position and time can then be treated as 
(φ0, t0) for determining the next alignment. The process can then be continued 
for as many synods as desired.

To determine the function f (ε, φ), we appeal to the standard result that for 
an elliptical orbit of eccentricity ε  and period T, the time to travel from apsidal 
angle φ0  to angle φ is given by

 
								        (7)

Unfortunately, the exact closed-form solution of this integral involves 
computing the inverse-tangent of the product of a factor involving ε times the 
tangent of φ/2. Whenever a calculation involves an inverse-tangent, quadrant 
ambiguities come into play. In the present case this is compounded by the fact 
that φ accumulates to several multiples of 2π radians as subsequent alignments 
are sought. To avoid this complication, I treat the integral by a binomial 
expansion of the denominator to second order in ε, presuming that ε is not too 
great. (For the same reason, I avoid introducing Kepler’s equation, which also 
involves a tangent.) The function f of Eq. (4) is the indefinite integral:

 

					     (8)

To evaluate these calculations, I prepared a double-precision fortran 
program into which the user enters the desired planetary sidereal period TP 
in years, the eccentricity, and the apsidal angle φ0 of an initial alignment. The 
program computes the aphelion and perihelion distances of the planet to ensure 
that no Earth-orbit crossings occur, and then determines apsidal angles and 
times for 100 subsequent alignments. 

Preliminary calculations indicated that the time between successive synods 
does indeed vary somewhat around the textbook value that would be computed 
from Eq. (1), so the program takes a brute-force approach. Beginning at a trial 
value of φ0 ++ 0·02 radians and going in steps of 0·02 radians, the constraint 
equation is evaluated until it changes sign; a bisection routine is then used to pin 
down the apsidal angle of the next alignment to a tolerance of 10−8 radians. The 
‘initial angle’ φ0 is then reset to the position of the alignment so determined, and 
the calculations reiterated to determine the next alignment. The program runs 
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(φE – φP ) = ++ 2π ,

(φE – φ0) ++ 2π – (1–ε2)3/2 ( TP )[f(ε, φP ) – f(ε, φ0 )] = 0. TE

(t – t0) = (1–ε 2)3/2 T  ∫   0

dφ  .
2π (1–ε cos φ)2

φ

φ

f (φ, ε) =∫   dφ
=∫(1 + 2ε cos φ + 3ε 2 cos2 φ + ...)dφ. (1–ε cos φ)2

= φ(1 +   ε 2) + 2ε sin φ +    ε 2 sin (2φ) + ... . 
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to about 250 lines including extensive comments and executes in a few seconds 
on a desktop computer.

Fig. 2 shows results obtained for Mars, for which a NASA website gives 
TP = 1·881 years and ε = 0·0935.1 Our inquisitive student is indeed correct. 
Synodic periods vary from about 2·09 to 2·21 years, a spread of some 44 days. 
The average over 100 synods, 2·1357 years (s.d. = 0·0380 years), is close to the 
value that would be computed from Eq. (1), 2.1351 years. Runs with increasing 
assumed eccentricity show a trend to increasing average, but also with increasing 
spread and with the nominal value always well within the spread.

The quasi-periodicity evident in Fig. 2 hints at a phenomenon known to 
ancient astronomers: that oppositions of Mars show a repeating pattern with 
respect to background stars in that nine nominal synodic periods of 2·1351 
years corresponds to a little more than 19 years. Venus exhibits a similar effect, 
with five of its 583·9-day synodic periods spanning almost exactly eight years. 
This sort of effect is by no means guaranteed; the synodic period needs to be 
close to a rational-fraction number of years.

Synodic periods are now of largely historical interest, but it can be enjoyable 
to explore the nuances of what we learned in foundational classes. I would be 
happy to share the fortran code with any interested reader.

Reference

	 (1)	 https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

Fig. 2

Times between successive oppositions of Mars; T = 1·881 yr, ε = 0·0935, φ0 = 0.
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